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1 Introduction and Objectives 
Encouraging travelers to walk and bike in lieu of motorized modes of travel benefits 
both the traveler and the community at large. Maximizing these system benefits is 
critically important for the state and municipalities, especially when funding for 
transportation is scarce.  In order to make better funding decisions for non-
motorized transportation infrastructure, it is first necessary to understand
comprehensively the current walking and biking behavior of a region’s inhabitants. 

This study investigates the linkage between non-motorized traffic volumes and the 
built environment by focusing on a larger set of road intersection-based counts of 
the PM-peak hours. The dearth of effective methods to address the spatial 
dependencies present in these comprehensive data sets motivated this geospatial
study to determine (a) whether spatial dependency exists for non-motorized traffic 
volumes, and (b) whether a significant spatial relationship could be identified 
between non-motorized traffic volumes and specific built-environment 
characteristics once the spatial dependency was accounted for.  Addressing this non-
random factor in spatial based counts is an essential step to attaining a robust
understanding of bicycle and pedestrian travel throughout a region. Some of the 
technical information covered in this report was also compiled in a conference paper 
(Lu et. al., 2012). 

For a better prediction of motorized and non-motorized travel on multimodal 
facilities, spatial dependency must be considered because traffic volume at one 
monitoring station is related to the volume at neighboring stations due to the
routing and the continuity in the network due to area-wide traffic circulation and 
common origins and destinations. A few studies have acknowledged this spatial 
dependency. Of them, Eom et al. (2006) researched annual average daily traffic 
(AADT) using spatial Kriging estimation. The spatial model outperforms that of the 
ordinary least-square (OLS) model. Zhao and Park (2004) analyzed AADT in grid-
like networks utilizing geographically weighted regression (GWR) that compensates 
for spatial dependency by estimating local model parameters. They found GWR 
models were more accurate than OLS models and useful for studying the effects of 
the variables at different locations. A smaller group of studies have conducted 
geospatial analyses of walking and bicycling with appropriate recognition of spatial 
dependency. Zahran et al. (2008) acknowledged spatial dependency in their study of 
nationwide county-based data. 
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2 Study Area 
The study area for this project is Chittenden County, Vermont, the planning region 
for the Chittenden County Regional Planning Commission (CCRPC) (see Figure 1). 

Figure 1  Project Study Area 

The CCRPC area includes a 62-square-mile urban area that contains Burlington,
the largest city in Vermont. It is bounded to the west by Lake Champlain and to the 
east by public lands in the Green Mountains. Chittenden County has the largest
population and employment in the state, with approximately 150,000 residents (of 
approximately 620,000 in Vermont) and more than 100,000 jobs. Like most regions 
in the country, the urban core has spread into neighboring municipalities and now 
includes a suburban development pattern around Burlington. 
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3 Data 

3.1 Intersection-Based Non-Motorized Traffic Count Data 
Intersection-based counts were manually collected by CCRPC using traffic-count 
boards from each inbound approach of 428 intersections throughout the study area 
between 2000 to 2009 (black and red dots in Figure 2). 

Figure 2  Intersection-Based Non-Motorized Traffic Count Locations, 2000 - 2009 
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Bicycling and walking volumes present at each intersection were recorded only as a
total for each approach – the turning movements or outbound approach was 
neglected. At some locations, the counts represented hours from multiple years in
the 10-year period (red dots in Figure 2). Aggregated by hourly-total count, the 
initial dataset consisted of 3,541 records, or an average of 8 hourly totals per 
location. Almost all of count locations encompassed the 2-hour PM-peak period 
(4:00-6:00PM), and many of them included more hours in the day, up to a maximum 
of 12 hours between 7:00am and 7:00pm.  Growth factors were applied to normalize 
data. 

3.2 Land-Use and Infrastructure Data 
Land uses in the study area were taken from the Vermont E911 database and
geographical information system (GIS), which consists of the location and functional 
classification of each habitable structure in the state. The Vermont E911 data 
includes residential locations (single-family, multi-family, seasonal, and mobile 
homes) and non-residential locations (commercial, industrial, educational, 
governmental, health-care and public gathering). Vermont is unique in that this 
E911 database is publicly available to support emergency-response personnel 
statewide via the Vermont Center for Geographic Information (VCGI). 

Ambient land-use and infrastructural attributes that are commonly associated with 
non-motorized travel in the literature were selected as independent variables, 
(Owens et. al., 2010; Cervero and Kockelman, 1997). Most of these attributes 
require the identification of a buffer area within which the attribute is measured 
around a count at one of the 346 intersection-based count locations in the reduced 
data set. A 1,000-ft buffer area was selected as a rough approximation of a common 
median walking-trip distance, and a 2,500-ft buffer area was selected as a rough 
approximation of a common median bike-trip distance, and a maximum walking-trip 
distance. The descriptive statistics for each of these independent variables are 
compiled in Table 1. 
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Table 1 Descriptive Statistics for Independent Variables to be Modeled 

Independent Variable Buffer Min. Max. Mean Std Dev. 

Count of All Buildings 
1,000 feet 0 525 93.7 109.9 
2,500 feet 4 2,345 502.7 535.2 

Count of Commercial 
Buildings 

1,000 feet 0 228 15.5 31.9 
2,500 feet 0 464 63.7 102.6 

Count of Educational 
Buildings 

1,000 feet 0 31 1.0 3.5 
2,500 feet 0 98 5.0 13.0 

Count of Public Buildings 
1,000 feet 0 15 2.0 2.9 
2,500 feet 0 54 8.3 9.4 

Count of Residential 
Buildings 

1,000 feet 0 499 75.0 96.6 
2,500 feet 3 2,124 425.1 456.3 

Count of All Intersections 
1,000 feet 1 30 9.1 7.0 
2,500 feet 1 142 41.6 33.5 

Total Roadway Length 
(miles) 

1,000 feet 0.2 1.2 0.6 0.3 
2,500 feet 0.4 5.9 2.5 1.3 

Neighborhood Connectivity
Density (NCD)* 

1,000 feet 0.6 11.1 5.3 2.4 
2,500 feet 0.5 10.8 4.9 2.0 

Distance from Burlington 
Urban Area Centroid (mi.) NA 0.03 5.8 1.7 1.3 

Notes: *NCD is the number of intersections divided by total road length 
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4 Data Preparation 

4.1 Initial Reduction 
Outliers in the initial dataset of hourly total volumes were eliminated. A total of
five records were removed because the hourly totals exceeded 500 travelers, 
reducing the size of the data set to 3,536 records. It was then necessary to map the 
3,536 records to intersections so that spatial analyses would be possible. The
statistical treatment of spatial dependency required one record per observation site. 
First, to eliminate the need for a weekly correction, only observations from
Tuesdays, Wednesdays, or Thursdays were kept. Weekends and Fridays were 
eliminated because it was assumed that intersection-based non-motorized travel 
behavior varied between weekdays and weekends. Mondays were eliminated due to 
the common occurrence of holidays and the associated influence of the weekend 
activities. Then, only summer observations (during June, July, and August) were 
used to eliminate the need for seasonal correction. Finally, only PM-peak 2-hour
volumes were considered to exclude the need for a daily correction. Once these 
filtering steps had been executed, it was assumed that a more homogeneous data set 
would result. No daily, weekly, or seasonal adjustments would be needed for the 
final set of 964 2-hour count totals at 346 intersections. 

4.2 Temporal Corrections 
Obviously, some intersections had more than one 2-hour count total. This occurred 
when the PM-peak period for an intersection was counted in multiple years during 
the 10-year study period. 115 of the 346 intersections had multiple records 
representing repeated PM-peak 2-hour counts in separate years. Initially it was 
assumed that corrections should be made to compensate for the temporal variation 
in the age of the reduced dataset in the event that annual growth or decline in non-
motorized traffic had occurred. OLS regression was applied to estimate temporal
growth trends for: (i) all data from 2000 to 2009; (ii) data for only those locations 
where more than one year was represented. OLS regression results for all data
indicated a very low coefficient of determination (R2) of 0.004. This meant that no 
general growth trend existed in the study area during the 10-year study period. For 
the 115 intersections where more than one year was represented, simple linear 
regression was used to calculate location-specific growth rates. Figure 3 contains a 
histogram of the growth rates calculated for each of these intersections in bins at 
0.1% increments. 
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Figure 3  Histogram of Growth Rates for Intersections with Multiple Years of Counts 

A total of 37% of the growth rates are negative and 63% are positive. The minimum 
and maximum are -0.7% and +4.5% respectively. The mean and median are 0.2% 
and 0.1% respectively. The “0.0%-0.1%” bin contains 25 out of 115 growth rates, 
accounting for the largest portion. Based on these characteristics, it was assumed 
that the data could be used confidently without temporal corrections for all 10 years 
of study period. This finding is consistent with motorized traffic volumes in
Chittenden County, which have seen no significant changes through that same 
period (VTrans, 2010). 

Supported by this finding, the intersections represented by multiple years were 
aggregated into a single volume by averaging the count records from each year and 
rounding them to an integer. The resultant values are summarized in Table 2.  The 
histogram for these station-based counts resembles a typical Poisson or Negative 
Binomial distribution (Figure 4). 

Table 2 Characteristics of Final Intersection-Based Set of PM-Peak Traffic Counts 

Characteristic No. of Observations or PM-Peak 2-Hour Volume 
Number of Observations 346 
Minimum 0 

Mean 23 

Standard error 2 

Maximum 316 

Median 8 
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Figure 4  Histogram of PM-Peak, 2-Hour Intersection-Based BP Counts for 2000 - 2009 
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5 Results 
The entities at nearby locations often share more similarities than the entities far 
apart. Often, this notion is termed “Tobler’s first law of geography”: “everything is 
related to everything else, but near things are more related than distant things” 
(Tobler, 1970). Spatial dependency produces spatial autocorrelation (SA) in 
statistics when it conflicts with the assumption of independent observations
required for most standard statistical techniques. Hence, regression analyses 
without compensating for spatial dependency can yield “spatial heterogeneity” in 
which parameters estimated for the entire system inadequately describe the process 
at any given location and the estimated degree of autocorrelation varies 
significantly across geographic domain. Spatial regression models capture spatial 
relationships to avoid these weaknesses. This study was intended to: (a) Identify SA 
for the dependent variable and each of independent variables; (b) Use a spatial 
regression model to find the significant spatially-dependent relationships between 
the non-motorized volume and the independent variables of interest. 

5.1 Measurement of Spatial Dependency 
Spatial dependency can be assumed to exist among multimodal traffic at
neighboring intersections. Firstly, the neighboring intersections share a large 
portion of through-volumes. Secondly, traffic signal coordination promotes the group 
formation of traversing travelers. Moreover, neighboring intersections are
surrounded by similar land-use characteristics and infrastructural elements. For 
instance, two or more intersections can lie within the walking distance of one 
building. Hence, traffic volumes likely exhibit SA among close intersections across 
two-dimensional domain. With spatial coordinates, the first step is to utilize classic 
statistics to measure the degree of spatial dependency in dataset. Moran’s I and 
Geary’s c indices require a spatial weights matrix which reflects the intensity of the 
geographic nexus among neighboring observations, being global in the sense that 
they estimate the overall degree of SA. Moran's I was calculated for n observations 
on a variable x  at locations i, j, in terms of cross-products of the deviations from 
the mean (Moran, 1950): 

wij xi  xxj  x 
n i jI  2 (3)S0 xi  x 

i 

Where: 

x  – the mean of the x variable; 
wij – the elements of the weight matrix; 

S0 – the sum of the elements of the weight matrix: S0=ΣiΣjwij; and 
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I – changing from -1 (perfect dispersion) to +1 (perfect correlation); 0 indicates a
random spatial pattern.  

Positive SA happens when similar values exist nearby, while negative SA happens 
for dissimilar values. Geary’s c is based on the deviations in responses of each 
observation, as the equation below shows (Geary, 1954). 

2wij xi  xj  
n 1 i jc  2 

(4)
2S0 xi  x 

i 

The expectation of c is 1 in the absence of SA, regardless of the specified weight 
matrix (Sokal and Oden, 1978). Geary’s c index ranges from 0 to 2. A value of 1 
means there is no SA, whereas values at the range edges indicate a positive (0 to 1) 
or negative (1 to 2) SA. Both indices are inversely related to each other. Moran’s I is 
found consistently more powerful than Geary’s c (Cliff and Ord, 1975). The former is 
a more global measurement and sensitive to extreme values, whereas the latter is 
more sensitive to differences in close proximity. A natural logarithm transformation 
was applied to the count volumes to facilitate the SA analysis by making it closer to 
normality. The Wij parameter is used as a distance-based weight, which denotes the 
inverse of the distance between two intersections. 

Moran’s I has an expected value of [-1/(n-1)], which approaches zero as the sample 
size expands or in the absence of SA. For statistical hypothesis testing, Moran's I
values can be transformed to Z-scores whose absolute value greater than 1.96 
indicates significant SA at the 5% level (Moran, 1950). Table 3 shows all observed
Moran’s I indices and Geary’s c indices for all of the variables to be modeled in this 
study. 
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Table 3 Moran's I and Geary’s c Calculation Results 

Variable 
Observed Z Pr > |Z| 
I1 c2 I c I c 

Dependent variable3 0.23 0.88 76.19 -4.49 <.0001 <.0001 
Distance to Burlington downtown 
centroid 0.19 0.69 63.1 -11.6 <.0001 <.0001 

Predictors within the 1,000-ft scope (Buffer Area A) 
Number of all buildings 0.26 1.01 86.71 0.37 <.0001 0.710 

Number of all intersections 0.20 0.93 66.15 -2.55 <.0001 <.011 

Number of commercial buildings 0.16 1.29 52.20 10.70 <.0001 <.0001 

Number of educational buildings 0.08 1.38 25.70 14.00 <.0001 <.0001 

Number of public buildings 0.09 1.07 28.65 2.67 <.0001 0.008 

Number of residential buildings 0.21 1.06 67.94 2.23 <.0001 0.026 

Total roadway length 0.18 0.90 59.78 -3.56 <.0001 0.0004 

NCD 0.11 0.90 35.66 -3.91 <.0001 <.0001 

Predictors within the 2,500-ft scope (Buffer Area B) 
Number of all buildings 0.34 0.92 110.3 -3.17 <.0001 0.002 

Number of all intersections 0.30 0.85 99.6 -5.67 <.0001 <.0001 

Number of commercial buildings 0.27 1.12 87.7 4.25 <.0001 <.0001 

Number of educational buildings 0.18 1.28 59.8 10.30 <.0001 <.0001 

Number of public buildings 0.23 0.95 75.9 -1.85 <.0001 0.065 

Number of residential buildings 0.31 0.92 100.5 -2.88 <.0001 0.004 

Total roadway length 0.30 0.81 98.7 -7.13 <.0001 <.0001 

NCD 0.20 0.77 67.0 -8.55 <.0001 <.0001 
Notes: 
1. I – Moran’s I index (expected values were -0.003) 
2. c – Geary’s c index (expected values were 1.00) 
3. After logarithmic transformation for normality approximation. 

All of the Moran’s I indices exceed the expectation -0.003 with Z-scores larger than 
1.96, which means a significant positive SA. The Geary’s c indices also indicate 
positive SA (O’Sullivan and Unwin, 2003). The independent variable “Number of All 
Buildings” is illustrated in Figure 5 for each buffer area to demonstrate the 
presence of autocorrelation. 
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Figure 5 Number of All Buildings within 1,000 feet (left) and 2,500 feet (right) of each 
Intersection-Based Count Location 

The Pearson test treats two interval variables well-approximated by a normal
distribution. Therefore, distance to downtown centroid, total roadway length, and
NCD were excluded. The test for the variables of same type demonstrates that there 
are very strong (> 0.80) correlations for almost all variables from 1,000-ft and 
2,500-ft buffer areas, due to the presence of spatial containment. This result 
indicates that the spatial regression should avoid including simultaneously the 
variables from both buffer areas. The test results suggest that most of these 
variables are significantly correlated with each other in each buffer area. 
Expectedly, number of all buildings has very strong correlation with both numbers 
of commercial and residential buildings. Due to the recurring low correlations 
associated with the educational buildings in the 1,000-ft buffer area, it is assumed 
that the number of educational buildings is a variable that should be treated 
separately in regression modeling. Based on the bivariate analysis results for both 
buffer areas, GWR procedures were separately applied to two buffer areas. The
multicollinearity was tested for each buffer area separately. 
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5.2 Spatial Regression 
SA may operate in twofold forms: spatial dependency and spatial heterogeneity both 
of which are principal challenges in spatial analysis. Depending on specific 
statistical techniques, spatial dependency can enter spatial regression models: (i) in 
the error terms; (ii) as the relationship between the dependent variable and a 
spatial lag of itself; or (iii) as the relationship between the dependent variable and 
the independent variables. Generally, a model with autocorrelated errors could
produce better estimators and predictors than an OLS model but may be 
outperformed by universal Kriging for the purpose of producing optimal predictors 
(Vichiensan et. al., 2006). None of these models, however, explicitly address the 
issue of spatial heterogeneity. Although they are appropriate for describing a 
process with a non-constant mean, the nature of relationships itself is assumedly 
homogeneous everywhere, removing the possibility that the process operates 
differently in varied locations (Vichiensan et. al., 2006). 

5.2.1 GEOGRAPHICALLY‐WEIGHTED REGRESSIONS 

GWR models spatially heterogeneous processes in various areas, with the 
underlying philosophy that parameters may be estimated anywhere in study area
given a dependent variable and a set of independent variables measured at 
locations whose spatial coordinates exist (Brunsdon et. al., 1996; Fotheringham et. 
al., 2002). GWR gives relatively more weight to geographically close observations 
and less (or zero) to distant ones. This weighting scheme assumes that using
geographically close observations is essential to estimating local coefficients. 
Traditionally, a linear regression model may be written as: 

y i   Ti    i         (5)  

Where: 

  1, x ,..., x ,..., x T – The (K+1)-dimensional vector of the i th independenti i1 ik iK 

observation ( i  1, …, N ; k  1, …, K ); 

   ,  ,...,  ,...,  T – The (K+1)-dimensional vector of coefficients for the 0 1 k K 

intercept and independent variables; 
– The k th independent variable for the i th observation; xik 

N – Total number of independent observations; 
K – Total number of independent variables; 
i – Random error term. 

When the traditional linear model is applied, one global parameter is estimated for 
each independent variable to represent its relationship to the dependent variable. 
The OLS estimates for parameters take the form: 

̂ =(XTX)-1XTy (6) 
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ˆWhere  represents the vector of global parameters estimated, X is a matrix of 
intercept and independent variables, and y represents a vector of observations on 

ˆthe dependent variable.  is constant irrelevant to the spatial locations of N 
observations. GWR extends the framework by estimating local parameters as 
follows: 

K 

y   u ,v  u ,v x         (7)  i 0 i i k i i ik i 
k 1 

Where (ui,vi) denotes the spatial coordinates of point i and βk(ui,vi) is a realization 
of the continuous function Β(u,v) at point i. Hence, there is a continuous surface of 
parameter values and measurements of this surface are taken at certain points to
denote the spatial variability on the surface (Brunsdon et. al., 1996; Fotheringham 
et. al., 2002). Algebraically, the GWR estimator is: 

̂ (u,v) = (XTW(ui,vi)X) -1XTW(ui,vi)y      (8)  

Where W (ui,vi) is a n×n matrix whose off-diagonal and diagonal elements 
respectively denote zero and the geographical weighting of observed data for point i. 

Importantly, not only does GWR deal with spatial dependency by embodying 
geographical location in the intercept but also it addresses spatial heterogeneity by 
incorporating coordinates in parameter estimates (Fotheringham et. al., 2002). 
There is evidence that GWR can reduce the residuals more substantially, compared 
with models with an autoregressive term, because of the way in which the spatially-
dependent relationship is modeled through geographically-varying parameter 
estimates rather than through the error term (Fotheringham et. al., 2002). 

The 1,000-ft buffer area is enclosed within the 2,500-ft buffer area, so each variable 
of the same category (e.g., number of educational buildings) in the former is
numerically a subset of the latter. Statistically, this situation creates a 
multicollinearity issue that must be addressed for the validity in statistical 
inference. Pearson correlation coefficient measures the direction and degree of 
linearity relationship between two variables, useful to test general presence of 
multicollinearity. A positive or negative correlation means respectively a perfectly 
linear relationship in an ascending or descending fashion. A zero denotes the
absence of the linear relationship. Generally, a strong correlation is indicated by a 
coefficient whose absolute value exceeds 0.80; statistically a p-value (<0.05) means 
a significant linear relationship. 

Within a modeling process with the philosophy of “model parsimony”, all other 
things being equal and given any two models with equal log likelihood values, the 
model with fewer parameters is better. The Akaike Information Criterion (AIC) is 
useful for evaluating models (Akaike, 1973). When the AIC values for two models 
differ by more than 3, the models are considered significantly different 
(Fotheringham et. al., 2002). A model with smaller AIC is considered closer to the 
unknown true model (Burnham and Anderson, 2002). 

Table 4 displays the results from GWR application to the 1,000-ft buffer area. 
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Table 4 Results of the GWR Model for the 1,000-foot Buffer Area 

Independent
Variable 

p-values for significance test 
A-1 A-2 A-3 A-4 A-5 A-6 A-7 

Land-use 
Number of all 
buildings 0.29 0.00 0.00 0.00 0.00  0.00 

Number of commercial 
buildings 0.40 

Number of educational 
buildings 0.95 0.00 0.00 0.00 0.01 0.00 

Number of public 
buildings 0.53 

Number of residential 
buildings 0.33 

Network 
Number of 
intersections 0.98 

Total roadway length 0.62 0.75 
Distance to downtown 
centroid 

0.13 0.02 0.01 0.02 0.02 0.01 

NCD 0.94 0.69 0.75 

Model-specific attribute 
Intercept 0.11 0.08 0.00 0.00 0.00 0.00 0.00 

Measures of fit 
AIC 2486 2492 2481 2469 2470 2505 2464 
R-squared 0.561 0.632 0.625 0.636 0.623 0.597 0.629 
Adjusted R-squared 0.542 0.581 0.582 0.595 0.587 0.551 0.594 

All p-values from Monte Carlo heterogeneity tests less than 0.05 mean the relevant 
parameters significantly vary from place to place. Both Bi-square and Gaussian 
models were fitted and the former was found to have the better results. Model A-1 
encompasses all independent variables whose parameters vary insignificantly given 
the p-values above 0.05. The foregoing Pearson test revealed that the number of 
total buildings is strongly correlated with number of intersections and each of the 
land-use variables except for number of educational buildings, so Model A-2 
excluded these three land-use variables and that infrastructure-based variable. 
Model A-2 reveals that number of total buildings and number of educational 
buildings vary significantly at different intersections, and total roadway length is 
found to have an unacceptably high p-value. After excluding total roadway length,
Model A-3 shows number of total buildings and number of educational buildings 
have significant heterogeneity, and the model parsimony has been increased by 
lowering the AIC from 2492 to 2481. Model A-4 omits NCD and leads to an AIC 
reduction from 2481 to 2469. Unfortunately, Models A-5 and A-6 reverse the trend if 
either of significant land-use variables in A-4 is included, increasing the AIC (from
2469 to 2470 and 2505 respectively) and decreasing the number of significant 
variables from three to two. Model A-7 re-includes both of the significant land-use 
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variables but omits distance to downtown centroid, yielding the lowest AIC and 
significant p-values for both variables. Model A-7 has a lower AIC (2464 vs. 2469)
but a slightly lower R-square (0.629 vs. 0.636), compared with Model A-4. Given the 
similar parsimony and model validity, Model A-4 importantly unveils more 
underlying information in shaping spatial relationship. Therefore, Model A-4 is 
used as the final model on this buffer area. 

Table 5 demonstrates the results from GWR application to the 2,500-ft buffer area. 

Table 5 Results of the GWR Model for the 2,500-foot Buffer Area 

Independent
Variable 

p-values for significance test 
B-1 B-2 B-3 B-4 B-5 B-6 B-7 

Land-use 
Number of all 
buildings 

0.36 0.03 0.00 0.00 0.00 0.00 

Number of commercial 
buildings 

0.35  

Number of educational 
buildings 

0.36  

Number of public 
buildings 0.34  

Number of residential 
buildings 0.36  

Network 
Number of 
intersections 0.16 0.04 0.05 0.05 0.02 0.00 

Total roadway length 0.28 0.32 
Distance to downtown 
centroid 0.08 0.26 0.18 

NCD 0.24 0.02 0.02 0.23 0.11 0.36 

Model-specific attribute 
Intercept 0.00 0.00 0.00 0.00 0.00 0.05 0.01 

Measures of fit 
AIC 2463 2455 2449 2452 2442 2450 2463 
R-squared 0.625 0.629 0.617 0.649 0.643 0.644 0.639 
Adjusted R-squared 0.592 0.598 0.595 0.612 0.613 0.610 0.600 

Model B-1 includes all independent variables. The multicollinearity identified on
this buffer area makes it necessary to exclude other land-use variables in further 
modeling. Then, Model B-2 yields three variables with significant heterogeneity, 
including number of all buildings, number of intersections, and NCD. Total roadway 
length and distance to downtown centroid have insignificant parametric 
heterogeneity based on p-values. The absence of total roadway length from Model B-
3 makes no difference in uncovering significance, and distance to downtown centroid 
is still insignificant in local parameter variation. After neglecting distance to 
downtown centroid, Model B-4 reveals that number of all buildings and number of 
intersections are significant. Continually, Model B-5 reduces the AIC from 2,452 in 
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Model B-4 to 2,442 and also results in a significant intercept term in local 
parameter variation. Although each of Model B-6 and Model B-7 reveals a 
significant parameter variation, they increase the AIC and the p-values for the
intercept terms. The adjusted R-square values are also reduced. Therefore, Model B-
5 is treated as the final model due to its high R-Square (0.643), the highest adjusted 
R-square (0.613), and the lowest AIC (2,442). Figure 6 provides corresponding maps 
of the residuals from the estimates for each model at each data point in the study 
area. 

Figure 6  Residuals for Estimates from GWR Model A-4 (left) and GWR Model B-5 (right) 
A comparison of Figure 6 and Figure 5 indicates the effect of the GWR procedure on 
accounting for spatial autocorrelation. The lack of spatial trends in the residuals 
shown in Figure 6 indicates that the GWR models successfully accounts for the 
spatial dependency that was present in the independent variables, an example of 
which is shown in Figure 5. 

The independent variables share one common characteristic in parametric 
heterogeneity - the majority or large number of smaller values are scattered in 
proximity of Burlington area, and these larger values are spread outwards from 
Burlington area. This could be interpreted by the limited marginal effect of a unit 
increase in the three variables on the generation of non-motorized travel demand.
Take the number of all buildings as an example: since there are already a 
substantial number of all buildings which generate a large amount of non-motorized 
traffic, it is highly likely that an additional new building brings a limited increase 
in non-motorized demand. Comparatively, when the buildings are sparsely located 
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where non-motorized travel demand is low, the introduction of a new building may 
have a more drastic influence upon additional non-motorized travels. Note that for 
these three variables the patterns are somewhat different from one another. This 
difference between number of all buildings and number of educational buildings
could be attributed to the spatial placement of the latter which is disparate from 
that of the former due to the consideration for educational coverage of local 
populations. 

5.2.1.1 GLOBAL MODELS 

Two global models, ignoring geographical weighting for spatial heterogeneity, were 
fitted for comparison with the two final GWR models, as Table 6 shows. 

Table 6 Final Global Models for the 1,000-foot (A-4) and 2,500-foot (B-5) Buffer Areas 

Global Parameter AIC R2 
Adj.
R2 β Std Err T 

Global Model A-4  
Intercept 

2504 0.506 0.500 

19.68

-0.0004 

1.159

8.2E-05 

16.98 

-5.00Distance to downtown 
centroid 
Number of all buildings 0.06 0.005 12.45 
Number of educational 
buildings 

0.728 0.139 5.25 

Global Model B-5  
Intercept 12.95 0.74 17.45 

Number of intersections 2461 0.561 0.558 0.088 0.03 2.90 

Number of all buildings 0.013 0.002 6.63 

Comparison of the fit parameters of each set of models (local (GWR) and global) 
reveals the extent to which the use of GWR benefited this project. However, the 
global model parameters continue to help us better understand the nature of the 
relationships between non-motorized travel and the built environment. Model A-4 
improves R-squared (adjusted R-squared) from 0.506 to 0.636 (0.500 to 0.595),
although an increase is to be expected given the difference in degrees of freedom.
However, the AIC reduction from the global model to the local model (2504.24 to 
2468.66) suggests that the local model is truly a better fit to the data even 
accounting for differences in degrees of freedom. For Model B-5, the GWR model 
enhances R-squared (adjusted R-squared) from 0.561 to 0.643 (0.558 to 0.613) and 
brings the AIC down from 2,461 to 2,441. 
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6 Conclusions 
This study developed intersection-based GWR models to better understand how 
built-environment factors affect non-motorized travel. Strong spatial 
autocorrelations were confirmed in the count dataset, meaning that counts for 
intersections closer to one another were more likely to be similar. Models were 
fitted to each of two buffer areas to account for the differing influence of built 
environment on cycling and walking. GWR models were used to reflect the inherent 
spatial heterogeneity in the independent variables used to represent attributes of 
the built-environment. 

For the 1,000-ft buffer area, the number of all buildings and number of educational 
buildings were significant, relating positively to non-motorized volumes. Distance 
from the Burlington urban area centroid was also significant with an increasing
distance correlated to lower volumes. These results suggest that efforts to promote 
safe walking and bicycling routes to schools are an effective policy measure to 
promote these modes of travel, since these destinations are already strongly 
correlated with non-motorized travel. 

For the 2,500-ft buffer area, total building density and intersection density were 
significant, relating positively to non-motorized volumes. These findings are
consistent with previous studies that have concluded that non-motorized travel is
more common where destinations are closer together and street connectivity is 
higher, typically in downtown urban-centers. 

The strength of these relationships was estimated by investigating the parameters 
of the global regression model. Comparison of the fit parameters of each set of 
models (local (GWR) and global) reveals the extent to which the use of GWR 
benefited the study. Although the global model does not correct for the effects of
spatial autocorrelation, it can be used to estimate the relative influence of each of
the independent variables found to be significant. In this way, the global model 
parameters continue to help us better understand the nature of the relationships 
between non-motorized travel and the built environment. The results of the global 
regression model indicate that the largest magnitude of effect comes from the total 
number of educational buildings near the intersection and intersection density. 
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